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Chapter 1

Purpose of ARSenic

Executive Summary

Audience response systems (ARS) have been available since the 1960s [1]. As prices have dropped
and availability has increased, these systems have become increasing popular as pedagogical tools.
ARS technology enables active learning by allowing real-time polling of student opinions and knowl-
edge, as well as improving attentiveness and engagement in the classroom.

However, dissatisfaction with the cost and features of commercial ARS prompted me to create my
own system — ARSenic — which polls students using personal web-based devices such as smart
phones.

ARSenic is a free, open-source, web-based, ARS that can be installed on one’s laptop or on a server.
An instructor can control the polling using any web-capable device, such as a laptop, a smart phone
or a tablet computer. Students type in their answers and view answer summaries using any web-
capable device. This manual includes instructions for installing and using ARSenic on one’s own
computer. Full source code for this system is also included.
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CHAPTER 1. PURPOSE OF ARSENIC 2

Rationale for creating ARSenic

Audience response systems (ARS) have been available since the 1960s [2]. As prices have dropped
and availability has increased, these systems have become increasing popular as a pedagogical
tool. ARS technology enables active learning by allowing real-time polling of student opinions and
knowledge. Benefits of an ARS include [1]:

• improves attentiveness [3]

• increases student engagement in the classroom [4]

• increases knowledge retention [4, 5]

• allows anonymous polling

• gives immediate feedback

• promotes interactive learning

• insures that students understand key points before moving on

• collects data for reporting and analysis

There are many commercial ARS systems. Many of these use a combination of a student-held
response unit (clicker) and an instructor-based receiver unit. This type of system usually requires
several hundred dollars of hardware, as well as extra time to dispense, retrieve and maintain the
clickers during teaching activities.

Since 2007, smartphones and other portable computing devices have become increasingly common
among students and instructors, making it possible to use these not only as an ARS input device
[6, 7], but as a receiving unit as well [7].

Most of the ARS systems currently available limit the instructor to specific types of questions,
such as multiple choice questions (MCQ). While it is easy to grade MCQ and display their results
in graphic form, they also have a number of disadvantages. Students can get correct answers by
random guessing or through sheer “quizmanship”. Writing well-designed MCQ is an acquired skill
that can require considerable practice to master [8]. Another problem with MCQ is the “leading the
witness” effect, in which a student picks the correct answer only because they see it listed among
the possible answers.

MCQ are best adapted for testing well-defined or lower-order skills, while problem-solving and
higher-order reasoning skills are better assessed through short-answer and essay tests [1]. For
example, a diagnostic imaging study often yields a differential diagnosis, rather than one correct
answer. An ARS that lets students to enter multiple sequential short answers allows an instructor
to efficiently poll an entire class as to the most likely differential diagnosis (figure 1.1).
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Figure 1.1: iPad screenshot from an ARSenic teaching session. I asked my radiology residents to
sequentially enter their top 3 diagnoses for a particular lucent bone lesion.



CHAPTER 1. PURPOSE OF ARSENIC 4

It can take a lot of time to prepare well-written MCQ and embed them into a presentation. After
spending hours constructing a high-quality presentation, one may well begrudge spending another
30-60 minutes writing ARS questions.

Finally, an MCQ-based ARS makes it difficult to add questions on the fly during a presenta-
tion.

Because of these considerations, the optimal ARS for my personal use has the following crite-
ria:

• the ability to pose short answer questions

• minimal or no preparation time

• no password needed for students to access ARS

• no software installation required for students

• web-based system that works with any modern browser

• simple interface for students and instructor

• works with any presentation system (even a physical chalkboard)

• works on multiple platforms

• no extra hardware costs

• minimal expense

• works on laptop over local WiFi

• runs in background on laptop behind other programs

• can be installed on laptop or fixed-location server

Since I could not find a commercial ARS that met these criteria, I decided to create my own
simple web-based ARS system, which I call ARSenic. It has met my needs quite well, and has
been successfully deployed at several other sites by academic pals who have kindly helped me to
beta-test this software.

Although I occasionally prepare questions ahead of time, I usually don’t bother. Most radiology
lectures or case conferences revolve around fairly obvious questions, such as, “What is the find-
ings?” or “What is the most likely diagnosis?” or “What are the top 3 things on the differential
diagnosis?”.

This manual describes how to install and operate ARSenic on Macintosh, Windows or Linux com-
puters. Full source code for this system is included for those who wish to adapt or further develop
ARSenic.



Chapter 2

System requirements for
ARSenic

While ARSenic is platform-independent, there are certain system requirements. The scripts that
do most of the work are written in Python, version 2.7.1 [9]. However, these scripts should also
work in most other recent versions of Python.

Your computer will also need to have some type of webserver software installed. My Macintosh
Mac OS X computer has version version 2.2.22 of Apache [10] installed by default. My Ubuntu
11.04 system currently runs Apache 2.2.17.
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Chapter 3

Installing ARSenic

Installing ARSenic on Mac OS X

Installation on a Mac OS X system is very simple.

1. download the following file:

http://uwmsk.org/arsenic_distribution/ARSenic_0.75.pkg

Double-click this installer package and follow the installer instructions. An administrator’s password
will be needed to to install the ARSenic files.

This installer will automatically install a folder called “arsenic” in the standard Mac OS X web
document root – the /Library/WebServer/Documents folder. It will also install five Python scripts
and one configuration file into the /Library/WebServer/CGI-Executables folder.

2. start the webserver on your computer (Mac OS X 10.7 (Lion) and earlier)

On Mac OS X Lion (10.7) and earlier, this is done by going to System Preferences, clicking on the
“Sharing” preference pane, and then clicking the check box for “Web Sharing”. This will start the
Apache webserver built into the Mac OS X operating system.

3. install a web-sharing preference pane (Mac OS X 10.8 (Mountain Lion) and 10.9
(Mavericks))

When Apple updated the Mac operating system to 10.8, they removed the web sharing preference
pane in System Preferences. However, Tyler Hall has written a preference pane to replace it. This
can be downloaded at:

http://clickontyler.com/blog/2012/02/web-sharing-mountain-lion/

This preference pane can be installed by double-clicking on the downloaded file (figure 3.1).

Once installed, the web sharing preferences pane has only one control — an on/off switch (figure 3.2).
I leave mine on all the time.

6
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Figure 3.1: Web Sharing prefPane.

Figure 3.2: Web Sharing control panel.
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Installing ARSenic on Linux or Windows

For non-Macintosh platforms, installing ARSenic requires the user to be somewhat comfortable
with the command line interface on their computer.

1. download the ARSenic files at:

http://uwmsk.org/arsenic_distribution/ARSenic_0.75.zip

Upzip this file, which contains two folders of files that will need to be installed.

2. place the arsenic folder in your computer’s web document root

Inside a folder called “put the arsenic folder in web doc root”, there is another folder, called “ar-
senic”. The entire arsenic folder should be moved into the folder that is the web document root of
one’s computer. The precise location of this folder varies among platforms, webserver software and
software versions. For a typical Macintosh Mac OS X installation, this is the /Library/WebServer/-
Documents folder. For my Ubuntu 11.04 system running Apache 2.2.17, this is the /var/www
folder.

3. insure that the webserver has read and write permission for the file “answers.txt”

The “answers.txt” file lies within the arsenic folder. On a Unix-based platform such as Mac OS X or
Linux, one can set these permissions by typing the following lines in the terminal program:

cd /Library/WebServer/Documents/arsenic

chmod 777 answers.txt

Depending on your system, you may have to type “sudo” in front of the “chmod” command,
e.g.:

cd /Library/WebServer/Documents/arsenic

sudo chmod 777 answers.txt

4. place the Python scripts in your computer’s cgi-bin folder

In a folder named “put these files in cgi bin folder”, there are six files. All six of these files should
be moved to the cgi-bin folder for your computer. The precise location of this folder varies among
platforms, webserver software and software versions. For a typical Macintosh Mac OS X installation,
this is the /Library/WebServer/CGI-Executables folder. For my Ubuntu 11.04 system running
Apache 2.2.17, this is the /usr/lib/cgi-bin folder.

5. insure that these scripts are all executable

For example, on a Unix-based platform such as Mac OS X or Linux, one can set the appropriate
permission for the arsenic poll.cgi script by typing the following lines in the terminal program:

cd /Library/WebServer/CGI-Executables

chmod 755 arsenic\_poll.cgi

Again, depending on your system, you may have to first type “sudo” in front of the “chmod”
command, e.g.:

http://uwmsk.org/arsenic_distribution/ARSenic_0.75.zip
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cd /Library/WebServer/CGI-Executables

sudo chmod 755 arsenic\_poll.cgi

6. for non-Macintosh platforms, use a text editor to change the path information in
the file “config.py” to match the exact path to your web document root.

The default path in the config.py file assumes that the web document root is located on a Macintosh
at:

/Library/WebServer/Documents

For other platforms, replace “/Library/WebServer/Documents” with the path to your computer’s
document root. For example, if your Ubuntu document root is /var/www, then replace “/Li-
brary/WebServer/Documents” with “/var/www” in config.py.

7. start the webserver on your computer

For Unix and Windows computers, this will depend on exactly which specific webserver software
and which specific version is installed. For example, on my Ubuntu 11.04 server running Apache
2.2.17, I restart the Apache webserver with the following command:

/etc/init.d/apache2 restart



Chapter 4

Using ARSenic

How I Use ARSenic

I use ARSenic in two different scenarios. In the first scenario, ARSenic runs on a remote web-server.
On the plus side, no configuration or installation is needed, and all I need to do is to point my
students toward the URL for the ARSenic server. On the downside, I and my users all need to have
internet access for this to work properly.

In the second scenario, I run ARSenic on my own Mac laptop, using its built-in webserver. The
plus side here is that I don’t need to install ARSenic on a remote server — just on my laptop. I and
my students do need to be on the same WiFi network, although the WiFi router does not actually
need to be connected to the internet.

Scenario 1 — server-based instance of ARSenic

I keep a copy of ARSenic running continuously on one of my servers. This system allows users
anywhere on the internet to chime in with their answers. I have used this to poll my residents at
multiple locations around Seattle and to poll users from around the globe during online presenta-
tions.

Test-drive a server-based instance of ARSenic

To test-drive a server-based version of ARSenic, please visit the ARSenic website at http://uwmsk.org/arsenic.
There you will find links to a student’s view and an instructor’s view of a live ARSenic session.

Using ARSenic is fairly simple. The student can do one of two things: enter an answer or re-
fresh the answer list. The instructor can do one additional thing: clear the answer list for fresh
questions.

10
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Scenario 2 — laptop-based instance of ARSenic over local
WiFi

I keep the built-in webserver software (a.k.a Web-Sharing) running on my Mac laptop all the time.
This software (Apache 2.2.22) runs quietly in the background, while I run my presentation software
in the foreground. I devote my laptop screen to my presentation software, and administer ARSenic
via my iPad. It is possible to simultaneously give a presentation and administer ARSenic on the
same laptop, but most users find this awkward.

There is really no technical limit as to how long you can run an ARS session. You will be limited
instead by practical endpoints, such as your students dropping in their tracks or (more likely)
hounding you from the lecture room.

Using a laptop-based version of ARSenic is very similar to that of a server-based instance. A student
can do one of two things: enter an answer or refresh the answer list. An instructor can do two
additional things: start an ARSenic session and clear the answer list for fresh questions.

Starting an ARSenic session

1. Get everyone on the same WiFi network

Generally, most presentations will be given in a room with only one choice for the WiFi network.
However, if only some of your users are able to connect to ARSenic, dueling WiFi networks could
be the cause.

2. Start ARSenic on the laptop

To begin a session, the instructor should point her laptop’s web browser to a initial webpage with
a name known only to the instructor. In the default installation of ARSenic, this page is called
“arsenic admin.html”. However, this filename can be changed to any other desired name without
affecting ARSenic’s operation. In the default installation of ARSenic, the instructor would type in
the following address in the browser address field to bring up the opening screen for ARSenic:

http://localhost/arsenic/arsenic admin.html

http://localhost/arsenic/arsenic_admin.html
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Instructor’s view The opening screen contains a single button for the instructor to start the
ARS session (figure 4.1).

Figure 4.1: Opening instructor screen.

Once the instructor clicks the “Start ARSenic” button, the program interrogates the local com-
puter’s WiFi network connection, and displays a local URL to be given to one’s students (fig-
ure 4.2).

Figure 4.2: ARSenic instructor’s screen, displaying the instructor controls as well as the local
ARSenic URL to be given to students.

In the example above, when a student enters “http://10.0.1.16/arsenic” into the address field of
their web browser, their browser will connect to ARSenic.

3. Enter admin URL into iPad

Once the local ARSenic URL has been determined, the administrative URL will be a slightly
modified version of that URL. To control the session from my iPad, I type in this admin URL
into the browser screen of my iPad. Using the example above where the local ARSenic URL is
“http://10.0.1.16/arsenic”, I type the following administrative URL into my iPad:

http://10.0.1.16/arsenic/arsenic admin.html
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4. Quiz the users at will

The instructor’s screen should now be visible on the iPad. Besides the answer submission form,
this screen includes buttons to refresh the answer list and to clear the answer list.

As students enter their answers, ARSenic collects the answers into a text file called “answers.txt”,
sorts them into alphabetical order, and displays them on the screen (figure 4.3).

Figure 4.3: Instructor’s view of the ARSenic screen once several answers have been entered by
students.

Student view The student screen looks just like the instructor’s screen, but without the ability
to clear the answer list.
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Scenario 3 — using a laptop as a WiFi router and ARSenic
server

In some venues, you may find yourself at a venue with poor or no WiFi. Fear not, some laptops will
allow you to establish your own local network, using the laptop’s WiFi transceiver as a router. You
do not need to be connected to the Internet to pull this off. You could therefore give this technique
to hold an ARSenic session in a cave, or in a boat on the open sea, or on Mars. As long as your
students are within range of your laptop’s radio, Bob’s your uncle.

I suppose that there must be some limit to the number of users a laptop’s built-in WiFi can handle,
but don’t know what that number is. However, one ARSenic user has successfully used his Mac
laptop to poll 30 students. I’d love to hear reports from the field of how well this works on other
Macs and other systems.

Using a Mac laptop as a router

1. Creating a Network

Click the WiFi icon on your menu bar, and select “Create Network”, as shown in figure 4.4.

Figure 4.4: Creating a personal wireless network on a Mac laptop.

This will bring up another small window, which will allow you to name your new network, select
your preferred WiFi channel, and decide what kind of security you want (figure 4.5). I usually just
use the system defaults.

3. Start ARSenic on the laptop

Starting ARSenic via a personal network is exactly the same process followed when using an existing
WiFi network.

To begin a session, the instructor will point her laptop’s web browser to a initial webpage with a
name known only to the instructor. Again, in the default installation of ARSenic, this page is called
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Figure 4.5: Configuring your personal network.

“arsenic admin.html”. However, this filename can be changed to any other desired name without
affecting ARSenic’s operation. In the default installation of ARSenic, the instructor would type in
the following address in the browser address field to bring up the opening screen for ARSenic:

http://localhost/arsenic/arsenic admin.html

Instructor’s view The opening screen contains a single button for the instructor to start the
ARS session (figure 4.6).

Figure 4.6: Opening the instructor screen.

Once the instructor clicks the “Start ARSenic” button, the program interrogates your personal
computer to learn the details of the new personal network, and displays a local URL to be given
to one’s students (figure 4.7). In this example, the local ARSenic URL listed under the skull and
crossbones is “http://169.254.107.5/arsenic”. This is the URL that will be given to the students to
enter into the address field of their web browser.

http://localhost/arsenic/arsenic_admin.html
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Figure 4.7: ARSenic instructor’s screen, displaying the instructor controls as well as the personal
network ARSenic URL to be given to students.

4. Connect to Personal Network

It’s now time to get any personal internet devices used by you and your students connected to the
personal network. To connect an iPhone to the personal network, go to the WiFi setting screen on
my iPhone and look for the personal network. In this example, our new network — “Richardson
MacBook Pro 13” — is shown listed under “Devices” (figure 4.8).

Figure 4.8: iPhone WiFi setting screen showing the new personal network listed under “Devices”.

When selecting this new network, the iPhone presents a message, warning us that the laptop is not
connected to the internet. In this scenario, we don’t care about that, so we select “Join Anyway”
(figure 4.9).

The WiFi settings page now shows that the iPhone is connected to the new personal network.



CHAPTER 4. USING ARSENIC 17

Figure 4.9: iPhone warning us that the laptop is not connected to the internet.

5. Entering the ARSenic URL on the personal network

The final step in getting your students connected to ARSenic is to give them the URL we discovered
back in step 3 (figure 4.7). For this example, they would now enter “169.254.107.5 arsenic” into
the address field of their iPhone browser. The iPhone should now display the familiar skull and
crossbones icon of ARSenic (figure 4.10).

Figure 4.10: Success!! The iPhone is now connected to ARSenic via the personal WiFi network
that we just set up.

In a similar manner, you should now be able to connect any other web-enabled device to our new
personal network.
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6. Disconnecting from the personal network

When you’re done with your ARSenic session, don’t forget to disconnect your Mac from its personal
network. This is again done via the WiFi icon on the menu bar. For this example, we will select
“Disconnect from Richardson MacBook Pro 13” (figure 4.11).

Figure 4.11: Disconnecting the laptop from the personal network we created.

Using other laptops as routers

I have no personal experience doing this with systems other than Mac laptops. In theory, this
should be possible on any make of laptop. However, as the saying goes:

In theory, theory and practice are the same. In practice, they’re not.

If you are a Windows or Linux user and know how to do this, I’d be happy to include that
information here. Please send me a list of steps and appropriate screenshots and I’ll include your
how-to in this instructor’s guide.



Chapter 5

Limitations of ARSenic

To meet the criteria for an optimal ARS mentioned in Chapter 1, I spent a great deal of time
throwing out potential features when designing ARSenic.

I didn’t want students to have to bother with signing in to my ARS system. Therefore, users wishing
to use an ARS for taking attendance or for administering exams should consider a commercial
system that includes these features.

ARSenic has no built-in security — any idiot with a web browser can submit an answer via this
system. This has not been a problem for me so far. However, widespread use of this system
could make it a target for abuse. I therefore mention several practical ways of securing ARSenic in
Chapter 6.

Users hoping for colorful bar charts and pie charts will not find them here. For one thing, I regard
them as needless chart junk [11]. A better reason is that the fill-in-the-blank questions used by
ARSenic do not lend themselves easily to summary bar charts or pie charts. Instead, ARSenic
summarizes student-supplied answers in an alphabetized list.

Running a completely anonymized ARS system with fill-in-the-blank answers is not for the faint of
heart, as students quickly realize that they can enter almost anything into the system. In my large
ARS sessions (over 50 students), students have felt anonymous enough to include gentle badinage
with me and the other students along with their answers (figure 5.1).

19
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Figure 5.1: I showed my residents a radiograph of the pelvis of a patient with McCune-Albright
syndrome. I asked them: “What question would you ask this patient?” This iPad screenshot
contains a mixture of their answers and quips..
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One clever student figured out how to insert valid HTML image tags into the answer page . This
was the source of some merriment, but did not significantly detract from our teaching session.
Personally, I was delighted that this unknown student was engaged enough in the ARS process to
figure out how to do this. To date I have not seen actual profanity inserted into the ARS feed –
one hopes that most students will act like grownups. If my audiences ever do push things a bit too
far, it won’t be hard to write a “nanny” filter that will match answers against banned words in its
dictionary and excise them from the answer list.



Chapter 6

Security considerations

At present, the main security for ARSenic is its obscurity. In typical usage, ARSenic will be
temporarily accessible only to those students who are on the same WiFi router as the instructor
and only at the URL given by the instructor. Once the instructor leaves the vicinity of that router,
the URL given to the students expires. For laptop-based usage during occasional lectures, this type
of security should be more than sufficient.

If one is running ARSenic on a webserver that is constantly connected to the Internet, other security
measures should be considered. This is the case for a number of my presentations, which I give
to multiple remote sites using screen-sharing software (http://www.gotomeeting.com). For this
purpose, I have installed a copy of ARSenic on our section webserver, allowing attendees at remote
sites to express their opinions about cases.

One simple security measure for an Apache-based server would be to add a .htaccess file into the
arsenic folder [12]. Adding this file requires all users to first supply a password before being allowed
access to the ARSenic page. If more security is required, most webservers can be configured to
limit access to ARSenic files to a specific range of internet protocol (IP) addresses, such as only to
those located within one’s medical school.

ARSenic may not work everywhere, due to the restrictive firewall [13] configurations at some sites.
This is currently true for both our local pediatric specialty hospital and our local Veterans Affairs
hospital.

22
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Chapter 7

How ARSenic Works

This ARS was written in a combination of HyperText Markup Language (HTML) [14] and Python,
version 2.7.1 [9]. The ARSenic logo was adapted from a public domain vector image file hosted at
Wikipedia [15].

The student portion of ARSenic is controlled by one HTML file and two Common Gateway Interface
(CGI) [16] scripts written in Python (table 7.1).

Table 7.1: These three files control the student portion of ARSenic.

Script name Action

index.html student entry point into ARSenic system

arsenic poll.cgi allows student to enter answers

arsenic refresh.cgi allows student to refresh the answer list

Interactions between the HTML file and the CGI scripts are shown in figure 7.1.

23
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Figure 7.1: Flowchart describing the interaction of the HTML file and the CGI scripts running the
student portion of ARSenic.



CHAPTER 7. HOW ARSENIC WORKS 25

The instructor portion of ARSenic is controlled by one HTML file and three CGI scripts written in
Python (table 7.2).

Table 7.2: These four files control the instructor portion of ARSenic.

Script name Action

arsenic admin.html causes Python to interrogate local network and display local ARSenic URL

arsenic poll admin.cgi allows instructor to enter answers

arsenic refresh admin.cgi allows instructor to refresh the answer list

arsenic clear answers.cgi allows instructor to clear the answer list

Interactions between the HTML file and the CGI scripts running the instructor portion of ARSenic
are shown in figure 7.2.
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Figure 7.2: Flowchart describing the interaction of the HTML file and the CGI scripts running the
instructor portion of ARSenic.
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ARSenic Source Code

Files to put in the webserver document root folder

index.html

<html>

<head>

<title>ARSenic</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body> <center>

<img src ="120px-Skull\_and\_crossbones.png">

<h3>Welcome to ARSenic</h3>

a simple audience response system <br>by

<a href="mailto:mrich@uw.edu">Michael L. Richardson, M.D.</a>

</center>

<br><br><br>

<form action = ’/cgi-bin/arsenic\_poll.cgi’>

Your answer: <input type=’text’ name = ’name’ />

<input type = ’submit’ />

</form>

</body>

</html>

27
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arsenic admin.html

<html>

<head>

<title>Initial page</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body>

<center>

<img src ="120px-Skull_and_crossbones.png">

<h3>Welcome to ARSenic</h3>

a simple audience response system <br>by

<a href="mailto:mrich@uw.edu">Michael L. Richardson, M.D.</a>

<br><br>

<form action = ’/cgi-bin/arsenic_refresh_admin.cgi’>

<input type = ’submit’ name = ’refresh’ value = ’Start ARSenic’/>

</form>

</center>

</body>

</html>

answers.txt

<br>ABC<br>enchondroma
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Files to put in the webserver cgi-bin folder

config.py

#####################################

# Configuration file for ARSenic

#

# contains current document root

# for ARSenic

#

# and current version number

# of ARSenic

#

#####################################

# The default path variable is set for a standard Mac OS X system.

# For other systems, change this to the path to the web document

# root on your computer.

path = ’/Library/WebServer/Documents/’

# This variable contains the current version number of ARSenic.

version = ’0.75’
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arsenic poll.cgi

#!/usr/bin/python

import cgitb; cgitb.enable()

import cgi

import config

form = cgi.FieldStorage()

name = form.getvalue(’name’, ’none’)

# grab answers given so far

f = open(config.path + ’arsenic/answers.txt’, ’r’)

answers_old = f.read()

f.close()

# add user’s answer to end of list of other answers and write it to disk

# answers_new = answers_old + ’<br>’ + name

# add user’s answer to end of the text file containing other answers

# then split that file by ’<br>’ into a list

# then sort that list, join the elements by new ’<br>’

answers_new = ’<br>’.join(sorted((answers_old + ’<br>’ + name).split(’<br>’)))

# now write the new sorted list of answers to disk

f = open(config.path + ’arsenic/answers.txt’, ’w’)

f.write(answers_new)

f.close()

# now print out page with latest answers

print """Content-type: text/html

<html>

<head>

<title>ARSenic %s</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body>

<h3>Answers:</h3>

%s

<br><br>

<form action = ’/cgi-bin/arsenic_poll.cgi’>
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Enter your answer: <input type=’text’ name = ’name’ />

<input type = ’submit’ />

</form>

<br>

<form action = ’/cgi-bin/arsenic_refresh.cgi’>

<input type = ’submit’ name = ’refresh’ value = ’Refresh answer list’/>

</form>

</body>

</html>

""" % (config.version, answers_new)
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arsenic poll admin.cgi

#!/usr/bin/python

import cgitb; cgitb.enable()

import cgi

import socket

import config

form = cgi.FieldStorage()

name = form.getvalue(’name’, ’none’)

# grab answers given so far

f = open(config.path + ’arsenic/answers.txt’, ’r’)

answers_old = f.read()

f.close()

# add user’s answer to end of list of other answers and write it to disk

# answers_new = answers_old + ’<br>’ + name

# add user’s answer to end of the text file containing other answers

# then split that file by ’<br>’ into a list

# then sort that list, join the elements by new ’<br>’

answers_new = ’<br>’.join(sorted((answers_old + ’<br>’ + name).split(’<br>’)))

# now write the new sorted list of answers to disk

f = open(config.path + ’arsenic/answers.txt’, ’w’)

f.write(answers_new)

f.close()

myIP = socket.gethostbyname(socket.gethostname())

# now print out page with latest answers

print """Content-type: text/html

<html>

<head>

<title>ARSenic %s</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body>

<center>
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<img src ="/arsenic/120px-Skull_and_crossbones.png"><br><br>

<b>Local ARSenic URL:</b> http://%s/arsenic

</center>

<h3>Answers:</h3>

%s

<br><br>

<form action = ’/cgi-bin/arsenic_poll_admin.cgi’>

Enter your answer: <input type=’text’ name = ’name’ />

<input type = ’submit’ />

</form>

<br>

<form action = ’/cgi-bin/arsenic_refresh_admin.cgi’>

<input type = ’submit’ name = ’refresh’ value = ’Refresh answer list’/>

</form>

<br> <br><br>

<table border="2" cellspacing="5" cellpadding="5">

<tr><td>

<form action = ’/cgi-bin/arsenic_clear_answers.cgi’>

<input type = ’submit’ name = ’clear’ value = ’Clear answer list’/>

</form>

</td></tr>

</table>

<br>

</html>

""" % (config.version, myIP, answers_new)
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arsenic refresh.cgi

#!/usr/bin/python

import cgitb; cgitb.enable()

import cgi

import config

form = cgi.FieldStorage()

name = form.getvalue(’name’, ’none’)

# grab answers given so far

f = open(config.path + ’arsenic/answers.txt’, ’r’)

answers_new = f.read()

f.close()

# now print out page with latest answers

print """Content-type: text/html

<html>

<head>

<title>ARSenic %s</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body>

<h3>Answers:</h3>

%s

<br><br>

<form action = ’/cgi-bin/arsenic_poll.cgi’>

Enter your answer: <input type=’text’ name = ’name’ />

<input type = ’submit’ />

</form>

<form action = ’/cgi-bin/arsenic_refresh.cgi’>

<input type = ’submit’ name = ’refresh’ value = ’Refresh answer list’/>

</form>

</body>

</html>

""" % (config.version, answers_new)
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arsenic refresh admin.cgi

#!/usr/bin/python

import cgitb; cgitb.enable()

import cgi

import socket

import config

form = cgi.FieldStorage()

name = form.getvalue(’name’, ’none’)

# grab answers given so far

f = open(config.path + ’arsenic/answers.txt’, ’r’)

answers_new = f.read()

f.close()

myIP = socket.gethostbyname(socket.gethostname())

# now print out page with latest answers

print """Content-type: text/html

<html>

<head>

<title>ARSenic %s</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body>

<center>

<img src ="/arsenic/120px-Skull_and_crossbones.png"><br><br>

<b>Local ARSenic URL:</b> http://%s/arsenic

</center>

<h3>Answers:</h3>

%s

<br><br>

<form action = ’/cgi-bin/arsenic_poll_admin.cgi’>

Enter your answer: <input type=’text’ name = ’name’ />

<input type = ’submit’ />

</form>

<form action = ’/cgi-bin/arsenic_refresh_admin.cgi’>

<input type = ’submit’ name = ’refresh’ value = ’Refresh answer list’/>

</form>
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<br> <br>

<table border="2" cellspacing="5" cellpadding="5">

<tr><td>

<form action = ’/cgi-bin/arsenic_clear_answers.cgi’>

<input type = ’submit’ name = ’clear’ value = ’Clear answer list’/>

</form>

</td></tr>

</table>

<br>

</html>

""" % (config.version, myIP, answers_new)
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arsenic clear answers.cgi

#!/usr/bin/python

import cgitb; cgitb.enable()

import cgi

import socket

import config

form = cgi.FieldStorage()

name = form.getvalue(’name’, ’none’)

# grab answers given so far

f = open(config.path + ’arsenic/answers.txt’, ’r’)

answers_old = f.read()

f.close()

# replace them with a <br> and nothing else.

answers_new = ’’

# now write the newly cleansed answer file to disk

f = open(config.path + ’arsenic/answers.txt’, ’w’)

f.write(answers_new)

f.close()

myIP = socket.gethostbyname(socket.gethostname())

# now print out page with latest answers

print """Content-type: text/html

<html>

<head>

<title>ARSenic %s</title>

<meta name="viewport" content="user-scalable=yes, width=device-width" />

</head>

<body>

<center>

<img src ="/arsenic/120px-Skull_and_crossbones.png"><br><br>

<b>Local ARSenic URL:</b> http://%s/arsenic

</center>

<h3>Answers:</h3>
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%s

<br><br>

<form action = ’/cgi-bin/arsenic_poll_admin.cgi’>

Enter your answer: <input type=’text’ name = ’name’ />

<input type = ’submit’ />

</form>

<form action = ’/cgi-bin/arsenic_refresh_admin.cgi’>

<input type = ’submit’ name = ’refresh’ value = ’Refresh answer list’/>

</form>

<br> <br>

<table border="2" cellspacing="5" cellpadding="5">

<tr><td>

<form action = ’/cgi-bin/arsenic_clear_answers.cgi’>

<input type = ’submit’ name = ’clear’ value = ’Clear answer list’/>

</form>

</td></tr>

</table>

</body>

</html>

""" % (config.version, myIP, answers_new)
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